東京大学工学系研究科 システム創成学専攻

CFRTP の被雷後の構造健全性に関する研究 Research on structural integrity of CFRTP after thunder attack

37-096363 村上裕馬 指導教員 髙橋淳 教授

1. 序論

世界のエネルギー消費量は年々増加を続けている。 特に、運輸部門の大部分を占める自動車によるエネ ルギー消費量は途上国のモータリゼーションによる 増加が確実で、早急に対策が必要である。このよう な中、軽量化効果が大きく、比剛性・比強度の高い CFRP(炭素繊維強化プラスチックス)を素材とした 超軽量自動車の研究開発が活発となっており、なか でも、量産車への適用が有望視されている。しかし、 航空機や風車のように炭素繊維製の構造物は落雷に よる被害を受けるため、量産車への適用のためには 落雷に対する乗員の安全性保証が不可欠である。

本研究では、CFRTP 製の自動車が落雷を受けた場合の車体の損傷、損傷を受けた自動車の構造健全性を考察すべく、電荷を与えた場合の CFRP の損傷の大きさを測定し、損傷のモードの評価を行った。また、実際の雷による被害を評価すべく、シミュレーションを行った。

2. 評価方法

2.1 試験片

本研究では、等方性を有する CMT (carbon fiber mat reinforced thermoplastics) 試験片、炭素繊維を一方向 に積層した UD (uni-directional carbon fiber reinforced thermoplastics) 試験片、面内等方性を有する CTT

(chopped carbon fiber tape reinforced thermoplastics) 試験片を使用した。いずれもマトリクスはポリプロ ピレン (PP)を使用した。CMT 試験片に関しては、 繊維体積含有率 (Vf)の異なるものを使用した。こ れらは、本研究室、東レ社、三菱レイヨン社、東洋 紡社が共同開発し、力学特性を向上させた新しい材 料である。Table1 に使用した試験片を示す。

名称	Vf	繊維形態
CMT 材	20%	等方性
CMT 材	30%	等方性
CTT 材	50%	疑似等方性
UD 材	50%	一方向性

Table1 使用した試験片

3. 放電開始臨界電圧の評価

3.1 試験方法

放電開始臨界電圧を定量的に測定するために、株 式会社グリーンテクノのパルス高電圧装置を利用し、 試料ごとに距離を10mmから90mmまで10mm単位 で段階的に変化させた場合の放電開始電圧を測定し た。また、CMT 試験片(Vf20%)と UD 試験片で超 音波溶着接合を行い、接合前と比較した。

3.2 試験結果

Fig.1 に各試験片の放電開始臨界電圧を、Fig.2 に接 合前と接合後の試験片の放電開始臨界電圧を比較し たグラフを示す。各データにおいて、距離と放電開 始臨界電圧は強い相関関係を示した。

Fig.2 接合後の放電開始臨界電圧

3.3 考察

Fig.1のように、CFRPにおいては、Vfが高いほど 放電開始臨界電圧は低くなっている。導電性の高い 供試体においては空気の絶縁が破れやすくなった結 果、放電開始臨界電圧に変化が生じたと考えられる。 しかし、この結果は雷が落ちる頻度というよりも、 雷が落ちる部分に与える影響の方が大きいと推測さ れる。接合した試験片では放電開始臨界電圧が高く なったが、これは接着面での導電性の低下が原因で あると考えられる。

また、測定された放電開始臨界電圧は、空気の絶 縁破壊強度から計算された数値よりも低い結果にな ったが、これは電荷が導電性の高いストリーマの形 態をとったためであると考えられる[1]。

4. 損傷試験

4.1 試験方法

PERCUSSION WELDER を利用し、電荷を与え、 その損傷の面積を測定した。その際、電極直下の部 分は樹脂がすべて消失しているためにへこんでいる 領域があり、その外側には繊維が損傷しているため、 見た目上は盛り上がっている領域がある。前者を樹 脂消失領域、後者を繊維損傷領域と定義して、それ ぞれの面積を測定した。

また、損傷の形状を観察し、特徴を分析した。また、電圧と静電容量を変化させ、発生する熱量と損 傷面積の相関関係について評価した。

4.2 試験結果

損傷の形状を Fig.3 に示す。掲載した写真の試験片 に与えた熱量はいずれも 27J である。

Fig.3 損傷部の拡大図 (左上: CMT 材 Vf20%、右上: CMT 材 Vf30%、左下 CTT 材 Vf50%、右下: UD 材 Vf50%)

力学的等方性を有する CMT 試験片の損傷形状は 円形で Vf によらずほぼ同じであったのに対し、同じ く力学的には等方性を示す CTT 試験片では、損傷の 進展は表面の繊維の方向に大きな影響を受けていた。 また、UD 試験片においては、繊維に沿った方向に 損傷の広がりが見られた。このことから、損傷の進 展は、電気的異方性、熱的異方性に大きく依存する と言える。

各試験片における繊維損傷面積のグラフを Fig.4 に、樹脂消失面積のグラフを Fig.5 に示す。発生す るジュール熱と繊維損傷面積、樹脂消失面積に相関 関係が見られた。また、繊維損傷面積は、試験片に よる差は小さかったが、樹脂消失面積は、Vf が高い ほど大きいという結果が得られた。

Fig.5 樹脂消失面積

4.3 考察

Vf が高いほど樹脂消失面積が大きくなる要因として、単位体積当たりのマトリクスの量の違いが考えられる。一方、繊維損傷領域は Vf による違いが見られなかったことから、繊維破断に使われるエネルギーはほぼ等しいということが推測される。

5. CFRP の熱伝導性の検証

5.1 概要

LS-DYNA を利用して、試験片モデルを作成し、 CFRP 試験片に電荷によるジュール熱が与えられた 時の熱伝導についてのシミュレーションを行った。 パラメータとして、与える熱量、熱量を与える面積 と深さ、試験片の寸法、板厚方向の熱伝導係数を与 えた。また、雷の代表的波形から[1]、熱量を与える 時間を 0.001[s]とし、熱伝導によって消失する樹脂の 量を推定する。この結果と損傷試験の結果との違い について考察する。

Fig.7 シミュレーションモデル

5.2 解析結果

解析結果を Figs.8~12 に示す。なお、基本的な試 験片として板厚方向の熱伝導性が面内方向よりも低 い CFRTP CMT 材(Vf20%)を設定した。CFRP 試 験片における樹脂消失面積は、単位体積当たりの樹 脂の量を算出し、補正を行った。

5.3 考察

樹脂消失面積と電荷によって発生する熱量は相関 関係を持っていると推測される。また、試験片の寸 法は、樹脂消失面積に与える影響はほとんどないと いうことが示された。板厚方向の熱伝導率が高いほ ど、樹脂消失面積は小さくなる。しかし、板厚方向 の熱伝導率は損傷深さに大きな影響を与えることか ら、ある程度板厚方向の熱伝導は遮断された方が望 ましいと考えられる。板厚方向の熱伝導率は繊維形 態によって大きく異なると考えられるため、耐雷性 を検証する上で非常に重要な要素であると言える。 また、樹脂の消失する温度の設定により樹脂消失面 積に差が生じると考えられる。更に信頼性の高い結 果を得るためには、CFRTPの熱伝導係数、樹脂の消 失する温度に関しての定量的評価が必要である。

6. CFRP へのスパークの挙動

6.1 検証方法

スパークと導体の間に供試体を挟み、スパークが 導体へ通過するかどうかの検証を行った。供試体と して CFRP と PP を使用し、穴があいているかどう か、アースされているかどうかの条件を変えて行っ た。接着接合と超音波溶着接合を行った CFRP 試験 片において、スパークの挙動を観察した。また、ス パーク端子と PP 試験片との距離を縮めることで、 雷の特徴である沿面放電を観測した。

6.2 検証結果

Figs.13~17 に試験結果を示す。CFRP 試験片については、本研究で使用した試験片全てで同様の結果が得られたので、代表として穴の開いていない試験 片については CFRTP CMT Vf20%を、穴の開いた試験片については CFRTP CTT Vf50% の挙動 を示す。

Fig.13 アース時の平板試験片へのスパーク挙動 (左:PP,右:CFRP)

 Fig.14
 アース時の円孔付き平板試験片へのスパー ク挙動(左:PP,右:CFRP)

 Fig.15
 非アース時の CFRTP 試験片へのスパーク挙

 動(左:円孔無し,右:円孔有り)

Fig.16 試験片の位置をずらした場合の円孔付き平 板試験片へのスパーク挙動(左:PP,右:CFRP)

 Fig.17
 溶着接合を行った試験片のスパーク挙動 (左)と PP 試験片における沿面放電(右)

6.3 考察

導電性のない PP 試験片で遮蔽した場合は、スパークは迂回して導体に当たる。しかし、PP 試験片とスパーク端子との距離を縮めると、沿面放電が生じ、 導体へ再放電された。一方 CFRP 試験片で遮蔽した 場合は、アースされているとスパークは CFRP 試験 片に当たるが、アースされていない場合は一旦 CFRP に当たった後導体へ再放電した。

CFRP 試験片においては、アースを行うことによ り電荷を効率よく逃がす性質があることが分かる。 自動車のボディに導電性の乏しい材料を適用した場 合、沿面放電によって非常に大きな損傷を与える可 能性がある。

また、接合の方法により、導電性に大きな違いが 生まれる結果、乗員への安全性が保障されない可能 性があると考えられる。

7. 結論

本研究では、CFRTP の雷に対する特性を調べる実験を行い、以下に示す結論が得られた。

- (1) 放電開始臨界電圧は導電性の高さに依存する。 しかし、放電開始臨界電圧が低い物体において も落雷の可能性はあり、この結果は雷が落ちる 頻度というよりも、雷が落ちる部分に与える影 響の方が大きいと推測される。
- (2) CFRP 試験片に電荷を与えた時の損傷は繊維損 傷領域と樹脂消失領域に分類される。損傷の進 展に関しては、電気的異方性、熱的異方性に大 きく依存すると言える。繊維損傷面積は Vf によ る違いが見られないが、樹脂消失面積は Vf が高 いほど大きいという結果が得られた。
- (3) 熱伝導解析の結果、与える熱量と樹脂消失面積 は強い相関を持っていることが示された。また、 樹脂損傷面積は繊維体積含有率、板厚方向の熱 伝導率に依存し、板の寸法は影響がないと推測 した。また、樹脂の消失する温度により樹脂消 失面積に差が生じる。更に信頼性の高い解析結 果を得るためには、CFRTPの熱伝導率と、樹脂 の消失する温度の定量的評価が必要である。
- (4) スパークの挙動を評価した結果、CFRP はアー スされていれば効率よく電荷を流すために、乗 員への影響はないと考えられる。しかし、接合 の方法により導電性が失われた場合は電荷を逃 がしきれずに危険性が増す可能性が生じる。

謝辞

本研究は経済産業省-NEDO プロジェクト「サス テナブルハイパーコンポジット技術の開発」(平成 20~24年)の一環として行われたものであり,関係 各位に謝意を表します.

参考文献

- [1] 石井勝 よくわかる雷対策の基本と技術 日刊 建設通信新聞社 2006
- [2] 北川信一郎 雷と雷雲の科学 森北出版株式会 社 2001