

発表構成

1.研究背景 2.材料作成・試験方法 3.フレッシュ材の試験結果 4.補修及び補修材の試験結果 5.結論

研究背景 樹脂の種類による性質の違い CFRP(炭素繊維強化プラスチックス) > · 樹脂を炭素繊維で補強 比強度・比剛性に優れる→軽量化ポテンシャル 祭研化性樹脂: 従来からのCFRP 然可塑性樹脂: CFRTP

補修の方針					
 与えた負荷: CF/PP, CF/EPともに最大荷重の後まで負荷を与えた. ・ CF/PP → ①ひずみ約2.0%まで(最大荷重直後) → ②ひずみ約3.7%まで(一定の延性的変形後) ・ CF/EP → ひずみ約2.0%まで(最大荷重直後) 					
補修法: ・ CF/PP → ①パッチをあてずに再溶融 ②パッチを熟融着により接合 ・ CF/EP → パッチを接着接合させることにより補修する.					
補修の方針のまとめ					_
		材料の変形量 (ひずみ[%])	補修法	パッチの枚数	
	CF/PP	2.0	加熱のみ	×	
			パッチ (熱融着)	引張側:1枚 圧縮側:1枚	
		3.7	加熱のみ	×	
			×	×	
	CF/EP	2.0	パッチ (接着剤)	引張側:1枚 圧縮側:1枚	27

A損傷材の補修 CF/EP 捕修法: ① 表面を紙やすりで削り, アセトンで拭く(表面処理) ② 接着剤を損傷部に注入しつつ, パッチを接合する. Confr案のイメージ

各損傷材の補修 CF/PP(パッチなし)

<u>補修法</u>:

治具(アルミ製)に損傷材を配置し、プレス機に挿入する.
 160°C, 無圧力,1分,の条件でプレスした後に,
 160°C, 1.8MPa,1分,の条件でプレス

冶具に配置された損傷材

30

結論

- 1. CFRTPは損傷発生後に繊維と樹脂の剥離が生じて、大きなエネルギー吸収 能力を発現する. すなわち、いざというときにも安心な材料であるといえる.
- 損傷後のCFRTPを加熱することで繊維と樹脂の剥離が融着し、高いエネル ギー吸収能力を回復させることができる. すなわち、補修後も信頼性の高い 材料であるといえる.
- 損傷後のCFRTPに熱融着の手法でパッチを当てることで強度も回復する.また,外観上も継ぎ手が分からないほど美しく仕上がり,実用上においても優れている.
- 4. CFRTPの大きな弾性ひずみ範囲を活用することで、スチールに対し耐デント 性の観点からさらなる軽量化の可能性が広がる.

53

