

	を史は、王仲の剛	性の向上、変位	なの減少に影響を	与えるもの	、HICの局部	部的な	
上昇をもた	らす。						
リブ幅の変	更は、剛性に寄与	しない。緩衝作	■用があるようであ	るが、最大	合成加速度	まは高	
いままであ	る。						
ブ深さの変更							
	エンジンとの衝突	700		HIC			
2500		(j) 600	= center	rib depth	central area	upper rib	
1500	upper rib	500 400	upper rib	15	581	781	
Q 1000		2 300 8 200		最大合成加速度			
I 500		9 100			113	115	
0		Max o	10 15 20 25	衝突点最大	変位		
0	10 15 20 25		h (mm)		-58.70	-54.13	
いゴダの方面	in pranty						
リノ鴨の変更		400	R contor	HIC			
1400	= center	(J) 350	upper rib	rib depth	central area	upper rib	
1000	- opper no	5 250		(mm) 40	447	557	
일 600		150 E			最大合成加速度		
± 400		8 100			240	228	
200		X8 0		衝突点最大	麦位		
	00 40 60	-	20 40 60		CO 44	00.00	

総合評価・まとめ

健全性

- 4Gにおける変位量は、既存Steelモデルとほぼ同等。
- 耐デント性についても、Steelよりもひずみを生じないことが示された。
- 板厚については、20mmとかなり厚いものであるが、既存モデルのリ ブ+フードの厚さとほぼ同等。
- 軽量性
 - 既存Steelモデルから約40%程度軽量化。
- 安全性
 - 中央部におけるHICは50%に、最大合成加速度も50%程度に低下。
 - 衝突時のクリアランスの課題を解消した。Steelと同程度に抑えることができる。
 - 端部以外のどこに当たってもほぼ同じ程度の安全性を実現。
 - 端部領域における課題は、残る。

結論

- 歩行者衝突モデルのLS-Dyna上での再現
 - 妥当性のあるモデルが構築できた。
 - 既存のモデルよりも計算時間の短縮が可能になった。
 - CFRTPモデルでは、変位量が非常に大きくなるため、エンジンとの衝 突可能性が高まる。それによって既存steelモデルよりも危険性が増 すことが分かった。

• 構造解析

- リブ、フード各部の構造要素ごとの解析を行った。
- リブ構造は、CFRTPモデルにおいては局部的なHICを増大させることが分かった。
- ヤング率・板厚については、剛性を確保しつつ、ヤング率を下げることが有効であることが分かった。

結論

- 材料成形
 - 熱可塑性フォーム材と熱硬化性フォーム材についてサンドイッチ材を 作成し、両者の材料特性の比較を行った。
 - 衝撃時の繊維破断がCFRTS材には見られ、その結果保持荷重の低 下が見られるという特性の違いを確認した。
 - 感度解析結果に基づく材料を作成した。
- CFRTP製モデルの総合評価
 - 軽量性、安全性、健全性においてすぐれた機能性を示すボンネットの 形状を示すことができた。
 - クリアランスの問題を解消するボンネットの提案ができた。