本研究では,新しい手法に基づく中国のモータリーゼーションの 予測を背景に,2020年頃からの急激な石油消費による環境負荷
増大を危惧し、これを抑えるための対策技術として軽重化技術に ターゲットをしぼり 積み上げ法により得られた軽量化率「40%」の乗用車普及が、 省エネに寄与することを確認し
大物成形性,軽量性,コスト,リサイクラビリティなどを考慮し, これを満足する複合材料の開発を行った 提案する炭素繊維強化ポリプロピレン(CFRPP)は,これまで界面 接着/含浸などの問題から複合化のメリットがないとされてきたが, 成形法の手法によりこの問題を解決し,これまでにない優れた
性能を有する軽量複合材料の開発に成功した また一方で, CFRPPの3R性についても検討し, 3Rに有利な材料 であり,環境適合型であることを確認した 以上の検討を経て, CFRPPは,車体軽量化に極めて有効な材料 であり,また,環境適合性に優れると結論付けられた

【第1章,第2章】	【第3章】	【第4章】
エネルギー消費構造 運輸部門の石油依存	、 モータリーゼーション 新手法による予測	材料の検討 金属材料とFRP
【第7章】		材料の検討
軽量化による 省エネ効果の試算		段階的軽量化の検討
	必要な技術開発の整理	
【第5章】 炭素繊維一方向効 ポリプロピレンの 開発と評価	全化 D D 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	第6章】 連続炭素繊維強化 リプロビレンの 巻と評価 にびその再利用法

本手	≦法(Logistics)	に。	よる子	列の	の特	Ē
	予測の特徴	予測 範囲	途上国 の影響	乗用 (世	■車保有 世界∶億台	台数 す)
				2020	2030	2040
IEA	世界のエネルギーバランス の成長に基づく予測	世界	×	7.5	9.0	11.1
JARI	経済社会シナリオに基づく 予測	地域 世界				
Logistics	統計量に基づいた予測 ひとつの関数形で簡便に 予測	地域 世界		7.5	10.7	17.2
	世界の乗用車	保有台	数: 5	.3億台	/닄(20	02)

			STRUCTURAL	INDEX for	Integration	Member	Panel/Sheet	11
	Material	Young's Modulus	Specific Gravity	Specific Tensile Strength	Specific Young's Modulus	$\frac{\sqrt{E}}{\rho}$	$\frac{\sqrt[3]{E}}{\rho}$	
		Ε	ρ	σ / ρ	E/ρ	x 10 ³	x 10	
		GPa	-	MPa	GPa	Pa ^{1/2}	Pa ^{1/3}	
	Steel	210	7.8	62 (480/7.8)	27	59	76	
	Ti alloy	108	4.5	213 (960/4.5)	24	73	106	
	Al alloy	75	2.8	168 (470/2.8)	27	98	151	
	Mg alloy	42	1.7	118 (200/1.7)	25	121	204	
	Glass	73	2.4	50 (120/2.4)	30	113	175	
	Concrete	15	2.5	2 (4/2.5)	6	49	99	
	GFRP SMC Vf60%	12	2.0	50 (100/2.0)	6	55	114	
	CFRTS RTM Vf60%	46	1.6	438 (700/1.6)	29	134	224	
L	LC CFRTP Vf30%	23	1.2	167 (200/1.2)	19	126	236	J
	Wood	14	0.5	200 (100/0.5)	28	236	482	

熱硬化性CFRPと熱可塑性CFRP							
	CFRTS	CFRTP					
マトリックス	熱硬化性樹脂 (加熱で硬化)	熱可塑性樹脂 (加熱で軟化)					
技術	成熟	未熟					
連続繊維強化の 成形法	確立	未確立					
不連続繊維強化 の成形法	確立	確立					
再成形	困難	溶融再成形					

		15
ポリエチレ	<i>、</i> ンとポリプロピ	レンの比較
Crystalline Polymers	poly-ethylene (HDPE)	poly-propylene (isotactic)
Structure		CH ₂
Density (g/cm ³)	0.941 – 0.970	0.850 - 0.943
Crystallinity (%)	65 – 85	60 – 70
Weather proof	×	
Deflection temp. under load ()	60 – 83 (at 0.45 MPa)	118 (at 0.45 MPa)
Application	 films 50% bottles, containers 15% pipes 6% 	 automobile, appliance 60% film 20% fiber and yarn 6%
	·	

			試算条件	2		1
		Introduction begging year of ULA	Ratio of ULA occupied to newly possessed automobiles	Lightening rate of ULA	Maximum lightening rate of ULA	
Pos	OECD	2010	10% first +10% / year	10% first +10% / year	40%	
itive	Non- OECD	2015	5% first +5% / year	10% first +10% / year	40%	
Neg	OECD	2015	5% first +5% / year	5% first +5% / year	20%	
ative	Non- OECD	2025	5% first +5% / year	5% first +5% / year	20%	

解決	P法
界面接着	含浸
P P の無水マレイン酸による変性	低分子量(高流動性)PPの使用
PPの再結晶化(結晶化度の向上)	炭素繊維の湿式解繊
	成形温度
ポイド・成形不良 薄いの	CFRPPシートの積層

		訂	、験片	作製約	R	4	35
S/N	Fiber modifi	cation* Po	lvpropvlene	MFR (a/10min)	V.	Temp. ()	Process type
UD1	None		PP1	2	0.3	0 180	HC
UD2	C/W		PP1	2	0.3	0 180	HC
UD3	C/W		PP2	30	0.3	0 180	HC
UD4	C/W		PP2	PP2 30 0.40		0 180	HC
UD5	C/W		PP2	30 0.40		0 230	HC
UD6	C/W		PP2	30	0.4	0 180	LC
UD7	C/W		PP2	30	0.4	0 230	LC
* C/W I	means chemical	washed to fi	hrillate of ca	arbon fiber hundle	0.4	0 230	NUA
	解繊	高MFR	マレイン化	成形温度		再結晶	化処理
UD1	×	×	×	180		な	: L
UD2		×		180		な	: U
UD3				180) な		: U
UD4				180		な	: U
UD5				230		な	:し
UD6				180		徐冷 アニー「	リング 徐冷
UD7				230		徐冷 アニーリ	リング 徐冷
UD8				230		急冷 アニーリ	リング 急冷

_	CFRPPの破	⁴⁶
	CF/エポキシ	CFRPP
破断荷重	27259N	18349N
破断ひずみ	1.96%	1.50%
AE波形	ひずみ量1.25%から 発生	ひずみ量0.25%から 発生
マクロ観察	分断(テンション・シア)	ほうき状 未含浸・不整あり
SEM観察	ボイドなし 含浸良好	繊維周囲マイクロボイド
初期破壊には、繊維この除去により、	推まわりのマイクロボイドが C F R P P の品質は向上する	関与しているものと思われ ,

本研究の結論
 リサイクル材は,現在の自動車用GFRTP成形品 (射出/SMC)と同等の力学特性を発現したため, GFRTP適用部位への代替は可能である リサイクル材は,一方向材成形時につくる中間基材 を熱融着で表面に貼り付けるだけで,性能が画期的 に改善し,エネルギー吸収が問題となるドアの インナービームなどに適用可能である 本技術の効果は即効的であり,エネルギー消費の 激増が危惧される未来において極めて有効である 量産に際し,成形速度の向上,接合,安定した品質 の確保が今後の主な課題として残った

各章と業績との対応

			学術	学術	論文
	国内学会	国際学会	雑誌	雑誌	悉早
			(日)	(英)	ш ¬
第2章	3(1)				[12] [13] [14]
第3章	2(1)	2(2)		1(1)	[1] [3] [6] [16] [19]
第4章	3(0)	2(0)			[4] [5] [15] [17] [25]
第5章	1(1)	1(1)	1(1)		[2] [9] [20]
笛(辛	4 (1)	4 (2)			[7] [8] [10] [11]
第0 早	4(1)	4(2)			[21] [22] [23] [24]
第7章	3 (2)	1(1)		1(1)	[1] [3] [13] [16] [19]
第8章					
補遺A		1(1)			[2]
補遺B	1(1)				[18]