Sustainability - Explain it with your own terms

2011/11/7

Kazunori Kobayashi Japan for Sustainability EcoNetworks, Co.

Presentation

Imagine that we are holding "World Summit on Sustainable Development" in this room.

You should be able to present the followings;

- what is sustainability (with your own terms)
- what is your vision/strategies/policies for sustainability (with your own logic)

Presentation 10 min + Q&A/discussion 10 min each

[team] India China USA Germany Japan

Standards for assessment of progress for sustainable development

The "Bellagio Principles"

1. Guiding Vision and Goals

(clarity about sustainability)

2. Holistic Perspective

(systems and subsystems)

3. Essential Elements

(ecology, economics, social equity)

4. Adequate Scope

(temporal and spatial)

5. Practical Focus (clear standards, manageable tools)

http://www.iisd.org/pdf/bellagio.pdf

6. Openness (transparent methods and sources)

7. Effective Communication (simple, and audience focused)

8. Broad Participation (diversity, completeness, link to policy)

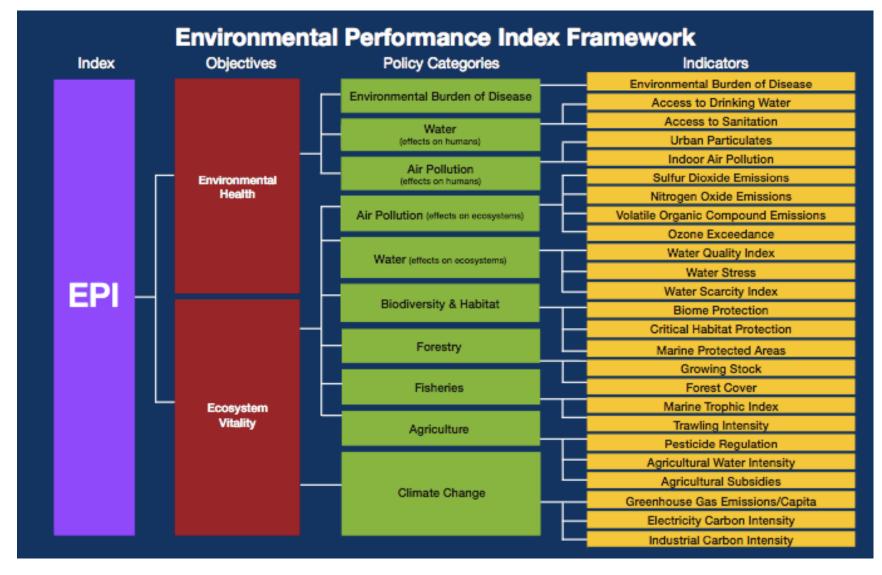
9. Ongoing Assessment (iterative, adaptive, learning-focused)

10. Institutional Capacity (support, maintenance, development)

Good Sustainability Policy? - Change the structure

≻Change feedback structure/information links in the system

Change the content and timeliness of the data that actors in the system have to work with


Change the ideas, goals, incentives, costs, and feedbacks that motivates or constrain behavior

> In time, system with a new information structure is likely to change its social and physical structures.

>It may develop new laws, organizations, technologies, people with new skills, machines and buildings.

Such a transformation need not be directed centrally; it can be unplanned, natural, evolutionary, exciting, joyful.

EPI 2010

http://epi.yale.edu/file_columns/0000/0007/epi-2010-policy-makers-summary.pdf

	Sub-Saharan Africa			Mid East & N. Africa	1
4	Mauritius	80.6	1	Algeria	67.4
2	Dibouti	60.5	2	Morocco	65.6
3	Namibia	59.3	3	Syria	64.6
4	Sap Tome & Principe	57.3	4	Israel	62.4
5	Gabon	56.4	5	Egypt	62.0
6	Eritrea	54.6	6	Tunisia	60.6
7	Swaziland	54.4	7	Armenia	60.4
8	Côte d'Ivoire	54.3	8	Turkey	60.4
9	Congo	54.0	9	Iran	60.0
10	Dem. Rep. Congo	51.6	10	Lebanon	57.9
11	Malawi	51.4	11	Jordan	56.1
12	Kenva	51.4	12	Saudi Arabia	55.3
13	Ghana	51.3	13	Kuwait	51.1
14	Mozambique	51.2	14	Libya	50.1
15	South Africa	50.8	15	Qatar	48.9
16	Gambia	50.3	16	Yemen	48.3
17	Uganda	49.8	17	Sudan	47.1
18	Madagascar	49.2	18	Oman	45.9
19	Tanzania	47.9	19	Bahrain	42.0
20	Zimbabwe	47.8	20	irao	41.0
21	Burkina Faso	47.3	21	United Arab Emirates	40.7
22	Zambia	47.0			
23	Guinea-Bissau	44.7			
24	Cameroon	44.6		Eastern Europe &	
25	Rwanda	44.6		Central Asia	
26	Guinea	44.4			
27	Burundi	43.9	1	Albania	71.4
28	Ehtiopia	43.1	2	Serbla & Montenegro	69.4
29	Senegal	42.3	3	Croatia	68.7
30	Equatorial Guinea	41.9	4	Belarus	65.4
31	Botswana	41.3	5	Georgia	63.6
32	Chad	40.8	6	Russia	61.2
33	Nigeria	40.2	7	Macedonia	60.6
34	Benin	39.6	8	Kyrgyzstan	59.7
35	Mali	39.4	9	Azerbaijan	59.1
36	Niger	37.6	10	Moldova	58.8
37	Togo	36.4	11	Ukraine	58.2 57.3
38	Angola	36.3	12	Kazakhstan	
39	Mauritania	33.7	13	Bosnia & Herzegovina	55.9
40	Central African Rep.	33.3	14	Tajikistan	51.3
41	Sierra Leone	32.1	15 16	Uzbekistan Turkmenistan	42.3 38.4

Geographic Regional Peer Groups by Rank, Country, and EPI Score

	Americas			Europe			Asia and Pacific	
1	Costa Rica	86.4	1	Iceland	93.5	1	New Zealand	73.4
2	Cuba	78.1	2	Switzerland	89.1	2	Japan	72.5
3	Colombia	76.8	3	Sweden	86.0	3	Singapore	69.6
4	Chile	73.3	4	Norway	81.1	4	Nepal	68.2
5	Panama	71.4	5	France	78.2	5	Bhutan	68.0
6	Belize	69.9	6	Austria	78.1	6	Maldives	65.9
7	Antigua & Barbuda	69.8	7	Malta	76.3	7	Fiji	65.9
8	Ecuador	69.3	8	Finland	74.7	8	Philippines	65.7
9	Peru	69.3	9	Slovakia	74.5	9	Australia	65.7
10	El Salvador	69.1	10	United Kingdom	74.2	10	Malaysia	65.0
11	Dominican Republic	68.4	11	Germany	73.2	11	Sri Lanka	63.7
12	Suriname	68.2	12	Italy	73.1	12	Thailand	62.2
13	Mexico	67.3	13	Portugal	73.0	13	Brunei Darussalam	60.8
14	Canada	66.4	14	Latvia	72.5	14	Laos	59.6
15	Paraguay	63.5	15	Czech Republic	71.6	15	Vietnam	59.0
16	United States	63.5	16	Spain	70.6	16	South Korea	57.0
17	Brazil	63.4	17	Denmark	69.2	17	Myanmar	51.3
18	Venezuela	62.9	18	Hungary	69.1	18	Solomon Islands	51.1
19	Argentina	61.0	19	Lithuania	68.3	19	China	49.0
20	Guyana	59.2	20	Luxembourg	67.8	20	India	48.3
21	Uruguay	59.1	21	Ireland	67.1	21	Pakistan	48.0
22	Jamaica	58.0	22	Romania	67.0	22	Indonesia	44.6
23	Nicaragua	57.1	23	Netherlands	66.4	23	Papua New Guinea	44.3
24	Trinidad & Tobago	54.2	24	Slovenia	65.0	24	Bangladesh	44.0
25	Guatemala	54.0	25	Estonia	63.8	25	Mongolia	42.8
26	Honduras	49.9	26	Poland	63.1	26	North Korea	41.8
27	Bolivia	44.3	27	Bulgaria	62.5	27	Cambodia	41.7
28	Haiti	39.5	28	Greece	60.9			
			29	Belgium	58.1			
			30	Cyprus	56.3			

Policy Conclusions

Several policy conclusions emerge from the 2010 Environmental Performance Index and analysis of the underlying indicators:

 Environmental decisionmaking can be made more fact-based and empirical. A data-driven approach to policymaking promises to make decisionmaking more analytically rigorous and yield systematically better results.

• While the 2010 EPI demonstrates the potential for better metrics and more refined policy analysis, it also highlights the fact that significant data gaps and methodological limitations hamper movement in this direction.

 Policymakers should move to establish better data collection, methodologically consistent reporting, mechanisms for verification, and a commitment to environmental data transparency.

• Wealth correlates highly with EPI scores. In particular, wealth has a strong association with environmental health results. But at every level of development, some countries fail to keep up with their income-group peers while others achieve outstanding results. Statistical analysis suggests that in many cases good governance contributes to better environmental outcomes. Environmental challenges come in several forms, varying with wealth and development. Some issues arise from the resource and pollution impacts of industrialization – including greenhouse gas emissions and rising levels of waste – and largely affect developed countries. Other challenges, such as access to safe drinking water and basic sanitation, derive from poverty and under-investment in basic environmental amenities – and primarily affect developing nations. Limited endowments in water and forest resources constrain choices but need not necessarily impair performance.

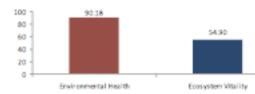
 Policymakers need to set clear policy targets and shift toward more analytically rigorous environmental protection efforts at the global, regional, national, state/provincial, local, and corporate scales.

• The EPI uses the best available global datasets on environmental performance. However, the overall data quality and availability is alarmingly poor. The lack of time-series data for most countries and the absence of broadly-collected and methodologically-consistent indicators for basic concerns, such as water quality, still hamper efforts to shift environmental policy onto more empirical grounds.

The 2010 EPI represents a "work in progress." It aims not only to inform but also to stimulate debate on defining the appropriate metrics and methodologies for evaluating environmental performance. Feedback, comments, suggestions, and criticisms are all welcome at our website, http://epi.yale.edu.

20	•	**		Value	Target	Proximity to Target (100-target met)
			•	15.0	0	86.9
				5.0	0	94.7
			•	29.8	20	79.3
				100.0	100	100.0
			•	100.0	100	100.0
				2.1	<= 0.01	44.2
				5.3	<= 0.01	33.8
	· .	1		4.5	<= 0.01	32.7
				64317701.1	0	9.3
			•	87.8	100	87.8
			•	5.6	0	54.9
				0.0	0	100.0
			•	10.0	>= 30	100.0
1*				0.2	>= 10	7.5
			•	45.0	100	45.0
				1.1	set	100.0
					>=0	-
			•	0.02	>=0	100.0
		1		24.7	0	75.3
			••	12.8	-<= 7.0	90.0
	•			0.7	0	0.0
1				22.0	22	100.0
	+	-		10.8	2.5	52.5
				65.1	36.3	72.2
ł				450.4	o	15.9

Indicators	
DALY: Environmental Burden of Disease (DALY)	
INDOOR: Indoor air pollution (%)	
OUTDOOR: Outdoor air pollution (ugim ³)	
ACSAT: Access to sanitation (%)*	
WATSUP: Access to water (%)	
SO2: Sulfur dioxide emissions (Sg/1000 sg km)	
NEX: Nitrogen oxides emissions (Gg/1000 sg km)	
NMVOC: Non-methane volatile organic compound emissions (Gg/1000 sq km)	
OZONE: Ecceystem ozone (ppb)	
WDI: Water quality index *	
WATSTR: Water stress index	
WSI: Water scarolty index	
PACOV: Biome protection (%)	
MPAEEZ: Marine protection (%)	
AZE: Critical habital protection (%)	
FORGRO: Growing stock change (ratio)	
FORCOV: Forest cover change (%)	
MTI: Marine trophic index (slope)	
EEZTD: Traving and dredging intensity (%)	
AGWAT: Agricultural water intensity (%)	
AGSUB: Apricultural subsidies (NRA)	
AGPEST: Pesticide regulation	
GHGCAP: Greenhouse gas emissions per capita including land use emissions (Mt CO2 eq)	
GHGIND: Industrial greenhouse gas emissions	
intensity(† CO2 per mill US\$)	
CO2/GME CO2 emissions per electricity generation (CO2 per KWh) *	•


In

Japan

EAST ASIA AND THE PACIFIC

GDP/capita 2007 est. (PPP) \$31,689 Income Decile 2 (1=high, 10=low)

Environmental objectives:

2010 ENVIRONMENTAL PERFORMANCE INDEX

Bank:

Score: Income Group Average:

Geographic Group Average:

20

72.5

66.1

57.1

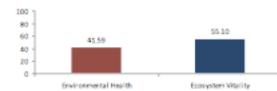
_

.

Policy Categories

	0	20	40	60	80 22	Country	Income Group	Geographic Group
Environmental Burden of Disease (DALYs)					•	86.86	78.7	8.03
Air Pollution (impact on humans)				1	•	87.0	90.8	58.6
Water (impact on humans) *				1	•	100.0	94.3	70.7
Air Pollution (impact on ecosystem)			t,			34.7	41.5	47.6
Water (impact on ecosystem) *					•	82.6	75.7	77.8
Biodiversity				•		63.2	63.1	54.4
Forestry					· · ·	100.0	98.3	80.1
Fisheries					•	87.6	76.4	70.5
Agriculture					•	68.0	74.3	80.14
Climate Change *						48.3	39.9	48.6
	_	_	_	<u> </u>				

0 20	e a e s	Value	Target	Proximity to Target (100xtarget met)
He (DALY)		65.0	0	39.4
lution (%)	· · · · ·	59.7	0	37.2
m (ugim ²)	•	64.9	20	37.9
ation (%)*		28.0	100	19.19
water (%)	· · · ·	89.0	100	81.0
emissions 00 ag km)		2.3	<= 0.01	43.6
emissions 00 sq.km)		1.6	<= 0.01	46.4
le organic 00 sg km0		8.1	<= 0.01	36.7
one (ppb)	•	73890698.2	0	8.8
ty index."		78.9	100	78.9
resa index	•	33.5	0	15.5
roity index	 →	0.0	Ø	100.0
ection (%)	•••	4.5	>= 10	45.2
ection (%)		0.5	>= 10	17.5
ection (%)	·	46.7	100	46.7
nge (tatio)	•	1.0	and	100.0
hange (%)	-•		>=0	-
ex (slope)		0.0	>=0	100.0
ensity (%)		28.1	0	71.9
ensity (%)	<u> </u>	29.7		55.1
ies (NRA)	· · · ·	0.1	0	59.5
regulation		3.0	22	13.8
per capita CO2 eq)		1.7	2.5	100.0
emissions mill USS)		124.9	36.3	41.0
electricity er KWh)*		927.5	0	0.0


Indicators
DALY: Environmental Burden of Disease (DALY)
INDOOR: Indoor air pollution (%)
OUTDOOR: Outdoor air pollution (ugim ²)
ADSAT: Access to sanitation (%)*
WATSUP: Access to water (%)
SO2: Sulfur dioxide emissions (Gg/1000 sq km)
NCX: Nitrogen oxides emissions (Gg/1000 aq km)
NMVOC: Non-methane volatile organic compound emissions (Sp/1000 sg km)
OZONE: Ecosystem ozone (ppb)
WQI: Water quality index*
WATSTR: Water stress index
WSI: Water scarcity index
PACOV: Biome protection (%)
MPAEEZ: Marine protection (%)
AZE: Critical habitat protection (%)
FORGRO: Growing stock change (tatio)
FORCOV: Forest cover change (%)
MTI: Marine trophic index (slope)
AGWAT: Agricultural water intensity (%)
AGSUE: Apricultural subsidies (NRA)
AGPEST: Pesticide regulation
GHGCAP: Greenhouse gas emissions per capital
Including land use emissions (MLCO2 eq) GHGIND: Industrial greenhouse gas emissions intensity(LCO2 per mill USS)
CO2KWH: CO2 emissions per electricity generation (CO2 per kWh) *

India

SOUTH ASIA

GDP/capita 2007 est. (PPP) \$2,600 Income Decile 7 (1=high, 10=low)

Environmental objectives:

2010 ENVIRONMENTAL PERFORMANCE INDEX

Bank:

Score: Income Group Average:

Geographic Group Average:

123

48.3

56.2

58.0

Income

Group

51.0

51.6

62.4

52.1

67.3

49.9

80.6

75.5

76.0

58.4

Country

39.35

37.6

50.1

37.1

68.3

38.6

100.0

86.0

35.7

60.2

٠

Geographic

Group

42.6

41.9 58.6

47.6

69.4

51.4

78.5

75.3

57.22

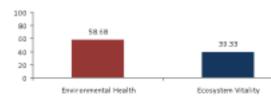
74.5

Policy Categories

	0	20	40	60
Environmental Burden of Disease (DALYs)			ŀ	
Air Pollution (impact on humans)			••	
Water (impact on humans) * Air Pollution (impact on ecosystem)				Ì
Water (impact on ecosystem) *				•
Biodiversity			•	
Forestry				
Fisheries				
Agriculture				
Climate Change *				•
			-	_

0 20 40 10 10 1	< Value	Target	Proximity to Target (100=target met)
	32.0	0	62.3
	49.0	100	48.4
· ·	73.0	100	31.7
	65.0	100	60.72
	0.66	100	79.3
	6.0	<= 0.01	33.5
	2.4	<= 0.01	42.4
	2.8	<= 0.01	37.9
	397710008.3	0	0.2
	68.0	100	68.0
•	0.0	0	100.0
• •	19.6	0	27.9
	8.6	>= 10	85.7
	0.3	>= 90	9.8
	47.7	100	47.7
	1.1	(e=1	100.0
· · · · · · · ·	2.2	>=0	100.0
•	0.01	>=0	100.0
	86.9	0	13.1
•	15.1	<=10	83.4
	0.1	0	76.1
• •	13.0	22	59.1
•	5.5	2.5	75.7
▶ 	264.1	38.3	4.8
	757.8	0	4.4

PER	FORMAN	ICE IND	EX	
	Rank: Score:		121 49.0	DALY: Environmental Burden of Disease (DALY)
	Sroup Average		58.7	INDOOR: Indoor air pollution (%)
graphic	: Group Avena	ge:	57.1	OUTDOOR: Outdoor air pollution (ug/m ³)
				ACSAT: Access to sanitation (%)*
				WATSUP: Access to water (%)
				SO2: Sufur dioxide emissions (Cg/1000 sq km)
	.33			NCX: Nitrogen coldes emissions (Cal1000 sc km)
33	-33			NMVOC: Non-methane volatile organic compound emissions (Cg/1000 sq km)
				OZONE: Ecosystem ozone (opb)
cosyste	m Vitali ty			WQ: Water quality index
				WSE Water scarcity index
_		Income	Geographic	WATSTR: Water stress index
-1	Country	Group	Group	PACOV: Blome protection (%)
1	62.31	53.3	60.8	MPAEEZ: Marine protection (%)
1	40.1	63.4	58.6	AZE: Critical habitat protection (%)
1	70.0	74.5	70.7	FORGRO: Growing stock change (ratio)
- 1				FORCOV: Forest cover change (%)
1	30.2	49.0	47.6	MTI: Marine trophic index (slope)
1	66.0	61.9	77.8	EEZTD: Trawling and dredging intensity (%)
_	57.2	53.7	54.4	AGWAT: Agricultural water intensity (%)
•	100.0	90.4	80.1	AGSUB: Agricultural subsidies (NRA)
1	56.5	75.4	70.5	AGPEST: Pesticide regulation
- 1	0010		10.0	GHGCAP: Greenhouse gas emissions per capita
1	69.1	64.3	80.14	including land use emissions (Mt CO2 eq)
	40.2	57.3	48.6	GHGIND: Industrial greenhouse gas emissions intensity(t CO2 per mill US\$)
				CO2KWH: CO2 emissions per electricity


Indicators

EAST ASIA AND THE PACIFIC

China

GDP/capita 2007 est. (PPP) \$5,084 Income Decile 6 (1=high, 10=low)

Environmental objectives:

2010 ENVIRONMENTAL

Score: Income Group Average:

Geographic Group Average:

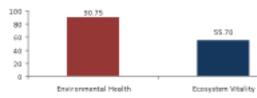
Policy Categories

	9	28	40	44	1
Environmental Burden of Disease (DALYs)				•	
Air Pollution (impact on humans)				•	
Water (impact on humans) * Air Pollution (impact on ecosystem)			•	•	•
Water (impact on ecosystem) *				•	
Biodiversity Forestry			1		
Fisheries		1			•
Agriculture				•	
Climate Change *				•	

CO2KWH: CO2 emissions per electricity generation (CO2 per kWh)

	0 20	4		00	7	Value	Target	Proximity to Target (100=target met)
(DALY)				•		17.0	0	82.8
tion (%)						5.0	100	94.7
(ug/m²)	_					18.6	100	100.0
on (%)*					•	100.0	100	100.0
ator (%)						100.0	100	100.0
ilasions (sq.km)						1.4	<= 0.01	48.9
sq km)		1				3.6	<= 0.01	37.9
organic sq.km)		•	.			3.6	<= 0.01	35.2
(dqq) ar						7526200.3	0	20.2
index *						78.6	100	78.6
ty index		_		- 1	•	0.0	0	100.0
a index			• •			15.9	0	32.5
tion (%)				•		10.0	>= 50	100.0
tion (%)		-				14.2	>= 10	100.0
tion (%)			1.	•			100	
e (ratio)					1	1.2	>=1	100.0
nge (%)					•	0.0	>=0	100.0
(slope)				11.	1	-0.01	>=0	70.6
sity (%)						97.9	0	2.1
sity (%)				•	•	0.7	<=10	100.0
i (NRA)		- 1				0.1	0	49.2
gulation r capita						22.0	22	100.0
(2 eq)						12.1	2.5	48.5
II US\$)						50.5	36.3	84.3
ectricity KWh)	-					426.7	0	17.1

Indicators


17	DALY: Environmental Burden of Disease (DALY)
73.2	INDOOR: Indoor air pollution (%)
66.1	OUTDOOR: Outdoor air pollution (µg/m ³)
1.5	ACSAT: Access to sanitation (%)*
	WATSUP: Access to water (%)
	SO2: Sulfur dioxide emissions (Gg/1000 sq km)
	NCX: Nitrogen oxides emissions (Gg/1000 sq.km)
	NMVOC: Non-methane volatile organic compound emissions (Gg/1000 sg km)
	OZONE: Ecosystem ozone (ppb)
	WQ: Water quality index
	WSE Water scarcity index
	WATSTR: Water stress index
Geographi	PACOV: Biome protection (%)
Group	MPAEEZ: Marine protection (%)
78.7	AZE: Critical habitat protection (%)
91.3	FORGRO: Growing stock change (ratio)
97.1	FORCOV: Forest cover change (%)
45.9	MTI: Marine trophic index (slope)
	EEZTD: Trawling and dredging intensity (%)
82.0	AGWAT: Agricultural water intensity (%)
68.0	AGSUB: Agricultural subsidies (NRA)
99.8	AGPEST: Pesticide regulation
68.8	GHGCAP: Greenhouse gas emissions per capita including land use emissions (Mt CO2 eg)
78.5	GHGIND: Industrial greenhouse gas emissions intensity() CO2 per mill US\$)
48.6	CO2KWH: CO2 emissions per electricity
	generation (CO2 per kWh)

Germany

EUROPE

GDP/capita 2007 est. (PPP) \$33,161 Income Decile 2 (1=high, 10=low)

Environmental objectives:

28

40

68

٠

+

58

2010 ENVIRONMENTAL PERFORMANCE INDEX

Rank

Score:

Income Group Average:

Geographic Group Average:

17

73.2

Income

Group

78.7

90.8

94.3

41.5

75.7

63.1

98.3

76.4

74.3

39.9

Country 82.81

97.4

100.0

40.0

72.4

100.0

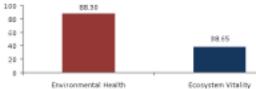
100.0

36.4

84.8

49.6

Policy Categories


Environmental Burden of Disease (DALYs)
Air Pollution (impact on humans)
Water (impact on humans) * Air Pollution (impact on ecosystem)
Water (impact on ecosystem) *
Biodiversity
Forestry
Fisheries
Agriculture
Climate Change *

United States of America

NORTH AMERICA

GDP/capita 2007 est. (PPP) \$43,102 Income Decile 1 (1=high, 10=low)

Environmental objectives:

Policy Categories

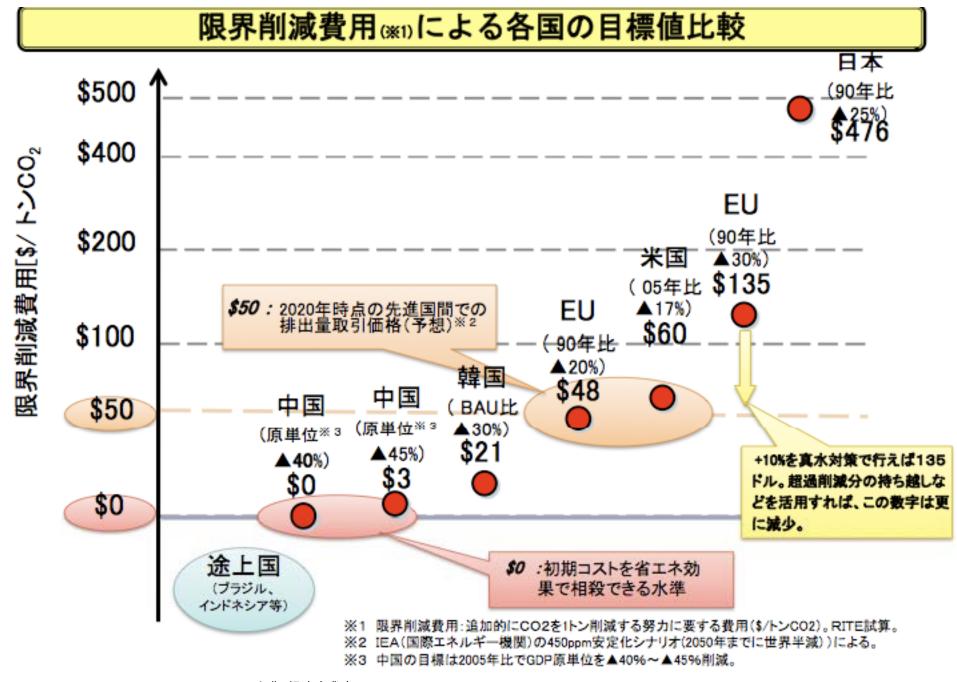
28 40 68 58 Environmental Burden of Disease (DALYs) Air Pollution (impact on humans) Water (impact on humans)* Air Pollution (impact on ecosystem) Water (impact on ecosystem)* ٠ Biodiversity Forestry Fisheries Agriculture Climate Change *

Rank: Score: Incorre Group Average: Geographic Group Average:	61 63.5 67.1 99.0	LO LO
B8.65		

2010 ENVIRONMENTAL PERFORMANCE INDEX

PACOV: Blome MPAEE2: Marine	Geographk Group	Income Group	Country
AZE: Ortical habitat	83.0	86.3	79.2
FORGRO: Growing stock	96.5	84.0	95.7
FORCOV: Forest cov	99.6	99.9	99.1
MTI: Marine trophi	28.4	40.7	31.6
EEZTD: Trawling and dredgin			
AGWAT: Apricultural wat	80.5	68.4	70.2
AGSUB: Agricultural su	63.9	53.1	65.9
AGPEST: Pesti GHGCAP: Greenhouse gas emiss	100.0	99.0	100.0
including land use emissions GHGIND: Industrial greenhouse	60.7	55.8	87.6
intensity(t CO	86.67	72.2	83.8
CO2KWH: CO2 emission generation (C	33.4	44.3	29.4

Indicators


	_					_	
	0	28	40	60	90	in Val	ue
		-	-	-		1	
ALY: Environmental Burden of Disease (DALY)					•		1
NOCOR: Indoor air poliction (%)							
OUTDOOR: Outdoor air pollution (µg/m ³)					• .		2
ACSAT: Access to sanitation (%)*						1	10
WATSUP: Access to water (%)					-	4	9
SC2: Sulfur dioxide emissions (Cg/1000 sq km)			•				
NCX: Nitrogen coldes emissions (Cg/1000 sq km)							
NMVOC: Non-methane volatile organic compound emissions (Gg/1000 sq km)		•				1	
OZONE: Ecosystem ozone (opb)				•	_	94024	196
WQ: Water quality index					•		7
WSI: Water scarcity index					•	1	
WATSTR: Water stress index				•		1	2
PACOV: Biome protection (%)				•		1	
MPAEEZ: Marine protection (%)		•					
AZE: Critical habitat protection (%)				•			5
FORGRO: Growing stock change (ratio)						1	
FORCOV: Forest cover change (%)							
MTI: Marine trophic index (slope)					•		
EEZTD: Trawling and dredging intensity (%)		1					2
AGWAT: Apricultural water intensity (%)					•		
AGSUB: Agricultural subsidies (NRA)				•		1	1
AGPEST: Pesticide regulation						1	1
HGCAP: Greenhouse gas emissions per capita including land use emissions (Mt CO2 eq)		10	•		Ť	1	2
GHGIND: Industrial greenhouse gas emissions							9
intensity(t CO2 per mill US\$) CO2KWh: CO2 emissions per electricity			•		1		
generation (CO2 per kWh)*			•			4	54
						_	

-			med
•	19.0	0	79.2
-	5.0	100	94.7
	21.3	100	96.6
	100.0	100	100.0
	99.0	100	98.3
	3.3	<= 0.01	39.6
	4.1	<= 0.01	36.5
	3.9	<= 0.01	34.2
	940241961.0	0	0.0
•	77.5	100	77.5
	0.0	0	100.0
	21.3	0	26.0
	6.1	>= 10	60.8
	6.5	>= 10	84.2
	57.9	100	57.9
1	1.0	$\rangle = 1$	100.0
	0.1	>=0	100.0
•	0.0	>=0	100.0
	24.9	0	75.1
	6.4	<=10	100.0
	0,1	9	68.8
• - I	19.0	22	86.4
	23.1	2.5	24.7
	90.2	36.3	56.6
	549.4	0	11.5

Proximity to Target

(100-target mark

Target

出典:経済産業省 http://www.meti.go.jp/policy/energy_environment/global_warming/index.html

Latest Policy Measures (for Climate Change)

-We need to reduce global emissions by 19 Gigatonnes (Gt) in 2020 and energy-related emissions by 48 Gt by 2050

Power: Approximately 38% of total savings to 2050. Renewable energy, carbon capture and sequestration (CCS), nuclear power and biomass will all be critical areas.

Transport: Approximately 26% of total savings to 2050. key technologies include electric and hydrogen fuel cell vehicles, improved efficiency and current and next generation biofuels.

Buildings: Approximately 17% of total savings to 2050. key technologies include improved efficiency in building appliances.

Industry: Approximately 19% of total savings to 2050. key technologies include CCS for industrial processes, and industrial motor systems.

-Implementing just seven proven policies can deliver these reductions – but need scaling up

1)Renewable energy standards: Regulation to require or feed-in tariffs to stimulate an increased production of energy from renewable sources, in particular wind and solar, could deliver 2.1 Gt of savings.

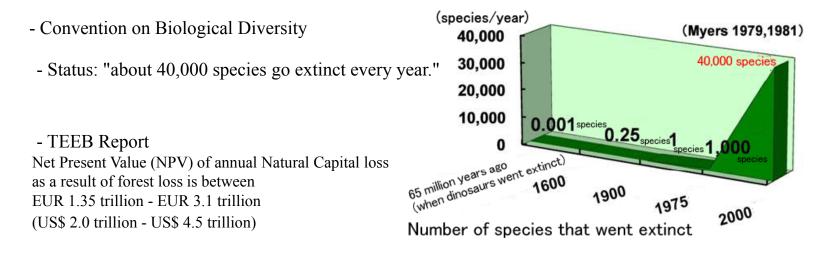
2)Industry efficiency: improved motors and other efficiency gains could deliver 2.4Gt of savings.

3)Building codes: improving standards for new build and modernising existing building stock saves 1.3 Gt.

4) Vehicle efficiency standards: driving up standards for vehicle efficiency could save 0.4 Gt.

5)Fuel carbon content standards: Reducing the carbon content of fuels could lead to 0.3 Gt of savings.

6)Appliance standards: increasing the energy efficiency of white goods and other appliances could reduce emissions by 0.3 Gt.


7)Policies to reduce emissions from deforestation and forest degradation (REdd): could deliver close to 9 Gt of reductions.

-In the longer term, we need technologies such as

Carbon capture and storage (CCS) Expanded nuclear power, new generations of solar energy, etc.

> Reference: The Climate Group, "Breaking the Climate Deadlock" project 'Technology for a Low Carbon Future'http://www.theclimategroup.org/what we do/breaking the climate deadlock/

Latest Policy Measures (for Biodiversity)

The Strategic Plan of the Convention on Biological Diversity or the "Aichi Target", adopted by the meeting includes 20 headline targets, organized under five strategic goals that address the underlying causes of biodiversity loss, reduce the pressures on biodiversity, safeguard biodiversity at all levels, enhance the benefits provided by biodiversity, and provide for capacity-building.

Among the targets, it is important to note that Parties:

- Agreed to at least halve and where feasible bring close to zero the rate of loss of natural habitats including forests;

-Established a target of 17 per cent of terrestrial and inland water areas and 10 per cent of marine and coastal areas;

-Through conservation and restoration, Governments will restore at least 15 percent of degraded areas; and

-Will make special efforts to reduce the pressures faced by coral reefs.

Parties also agreed to a substantial increase in the level of financial resources in support of implementation of the Convention.

Reference: COP10 2010

http://cop10.jp/aichi-nagoya/english/cop/cop.html

The Economics of Ecosystem & Biodiversity

5 Suggestion for National and International Policy Makers

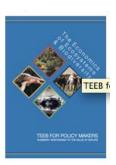
1. Reward benefits through payments and markets.

Payments for ecosystem services (PES schemes) can be local up to global. Product certification, green public procurement, standards, labelling and voluntary actions provide additional options for greening the supply chain and reducing impacts on natural capital.

2. Reform environmentally harmful subsidies.

Global subsidies amount to almost US\$ 1 trillion per year for agriculture, fisheries, energy, transport and other sectors combined. Up to a third of these are subsidies supporting the production and consumption of fossil fuels. Reforming subsidies that are inefficient, outdated or harmful makes double sense during a time of economic and ecological crisis.

3. Address losses through regulation and pricing.


Many threats to biodiversity and ecosystem services can be tackled through robust regulatory frameworks that establish environmental standards and liability regimes. These are already tried and tested and can perform even better when linked to pricing and compensation mechanisms based on the 'polluter pays' and 'full cost recovery' principles – to alter the status quo which often leaves society to pay the price.

4. Add value through protected areas.

The global protected area network covers around 13.9% of the Earth's land surface, 5.9% of territorial seas and only 0.5% of the high seas: nearly a sixth of the world's population depend on protected areas for a significant percentage of their livelihoods. Increasing coverage and funding, including through payment for ecosystem services (PES) schemes, would leverage their potential to maintain biodiversity and expand the flow of ecosystem services for local, national and global benefit.

5. Invest in ecological infrastructures.

This can provide cost-effective opportunities to meet policy objectives, e.g. increased resilience to climate change, reduced risk from natural hazards, improved food and water security as a contribution to poverty alleviation. Up-front investments in maintenance and conservation are almost always cheaper than trying to restore damaged ecosystems. Nevertheless, the social benefits that flow from restoration can be several times higher than the costs.

Plan

10/31

Session 1. - What is sustainability?

- countries and int'l communities
- measurement and tracking

Session 2. - vision

- indicators and policy => Workshop

11/7

Session 1. - Group work & Presentation

Session 2. - Discussion

- Latest policy framework