Biomass, Ocean Nourishment, Photobioreactor

Toru Sato

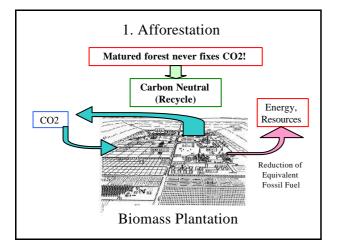
Technology for Reduction of CO2

Energy Saving
Energy Conversion
Sequestration/Recycle of CO2

Technology for Reduction of CO2

Energy Saving
Energy Conversion

Sequestration/Recycle of CO2


Geological Sequestration Ocean Sequestration Biological Sequestration

Technology for Reduction of CO2

Energy Saving
Energy Conversion
Sequestration/Recycle of CO2

Geological Sequestration Ocean Sequestration Biological Sequestration

> Afforestation Microalgae Ocean Nourishment

Capacity and Problems (Global)

Total Amount : 2000GtC (62%Forest, 38%Soil) Annual Timber Production : 3400Mt (364MtC/yr)

if carbonized (Charcoal): 218MtC/yr Sequestration (Efficiency 60%)

(16% of CO2 Emission from Fossil Fuel)

Eligible Area: 744Mha (Carbon Fixation: 2200MtC)

However,

Farm Area necessary for Population Explosion Jeopardize Local Economy

Cost

Capacity and Problems (Japan)

Total Forestry Area: 25Mha (10Mha in Artificial, 2nd in World) Annual Timber Increase: 69 x 107m3 (59 x 107m3 in Artificial)

equivalent to 8% reduction of domestic CO2 emission Therefore, 8.6 x 10⁷m³ / 1% reduction

or 2.2Mha / 1% reduction (cutting efficiency 70%)

However, most of them are burned at their last stage!!! Electricity from Woody (xylem) Wastes

if on Flat Fallow Area: 1Mha / 1% reduction but impossible!

Wide Area Abroad

Electricity from Biomass

Sweden: Woody Biomass covers 19% of Primary Energy (9000GWh)

USA: 7000MW by 550 plants (1% of Electricity)

Japan: 160MW (Target 33MW in 2010)

Electricity from Waste Woody Biomass

Capacity: 110Mt (6Mtoe=70000GWh in heat) (Oil Consumption: 217.5Mtoe)

Technology: Conventional Power Generation (efficiency 16%)

Gasification (efficiency 45%)

Gas Methanol Hydrogen

Cost: Collection + Transportation + Drying + Chipping + Gasification

10000JPY/t (35JPY/kWh in electricity)

13.86JPY/kWh (IGCC:Integrated Gasification Combined Cycle)

Economy of Biomass Power Plant

Chip Price: 1000-6000JPY/t (ave. 2500JPY/t)

1000JPY/t = 2.1JPY/kWh (Price to Grid is 2-3JPY/kWh)

to Obtain 10% Benefit,

Price to Grid: 12JPY/kWh (Wind Mill, TEPCO) 2000JPY/t 20JPY/kWh (more Government Support) 6000JPY/t

However, no one wants to sell the same timbers cheaper!!!

"Biomass Nippon"

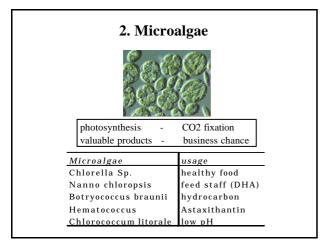
Dec. 2002 by MAFF, METI, ME

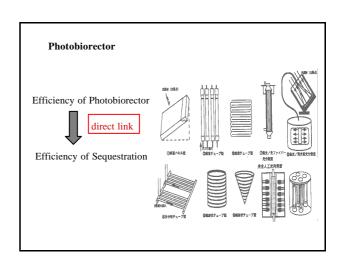
ーバイオマス・ニッポン実現に向けて(骨子イメージ)ー

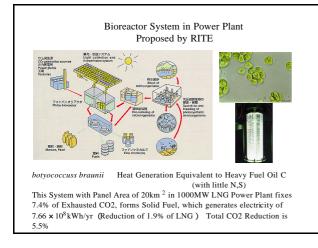
CDM: Afforestation Abroad

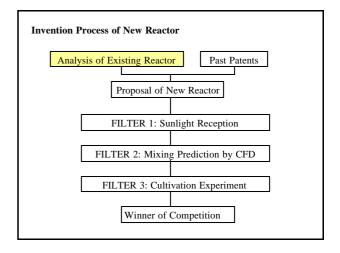
CDM (Clean Development Mechanism):

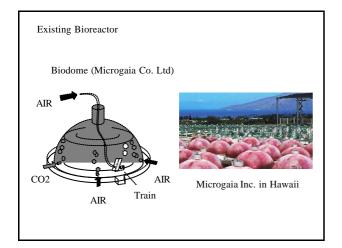
Developed countries can count on investments in undeveloped countries.

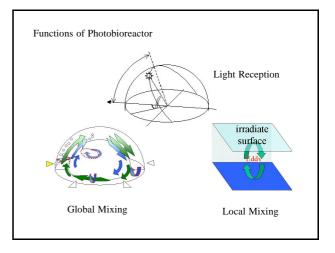

Note: COP8(Oct 2002) did not come to conclusion on CDM regulation

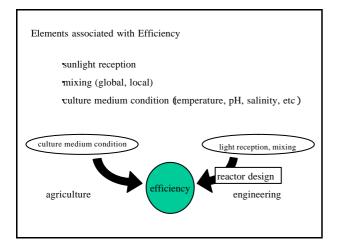

Afforestation in foreign countries!!!

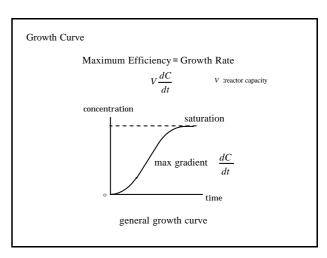


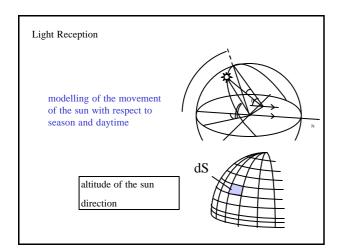

Cost of Foreign Afforestation for Carbon Fixation

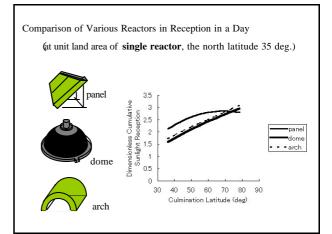

Organization	Site	Biomass	Investment (JPY)	Area (ha)	Carbon Fixation	Cost (JPY/tC)
Tokyo Electric Power	Australia, Tasmania	eucalyp- tus	1800mil. (total)	10000 /10yrs	3tC/ha	60000
Tohoku Electric Power	Australia, APFL Ltd.	eucaly - ptus	8000mil. (total)	26000 /10yrs	5tC/ha	61500
Kansai Electric power	Australia, Perth	eucaly - ptus	400mil. (total)	1000/ 20yrs	235KtC (total)	1700
Mitsubishi Paper Mills	Australia, Tasmania	eucaly - ptus	6300mil. (total)	25500 /15yrs	130KtC/ yr	3200
Japan Int. Forestry Center	Indonesia, LombokIsl.	neem	-	3000/ 10yrs	4.5tC/ha	4000
Idemitsu Kosan	Australia, Ebenezer	eucaly - ptus	25mil. (total)	135/ 5yrs	6820tC (total)	3700
Coal with Carbon Credit						

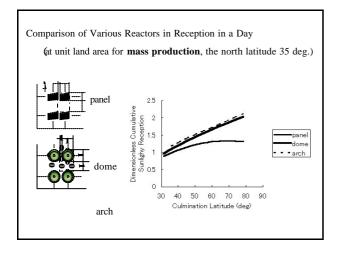


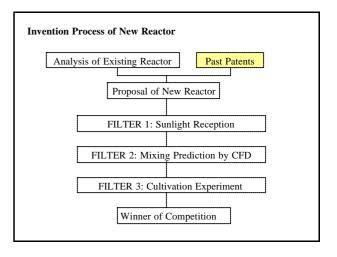


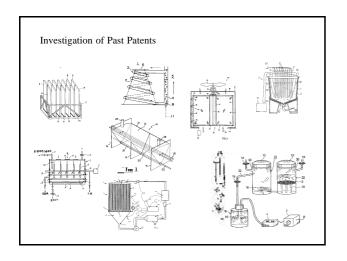


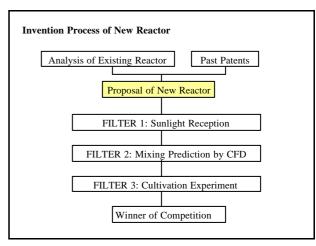


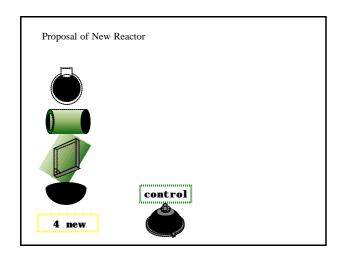


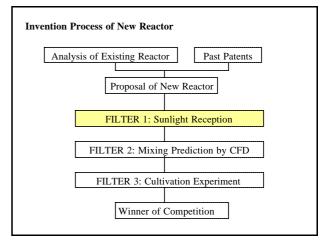


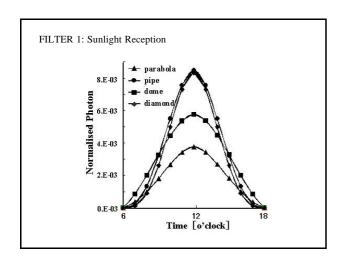


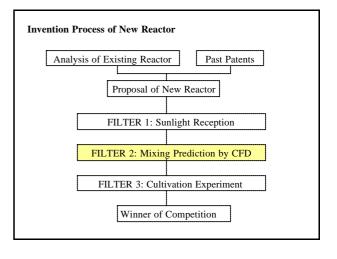


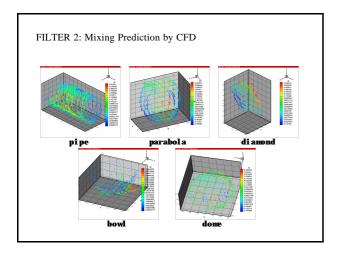


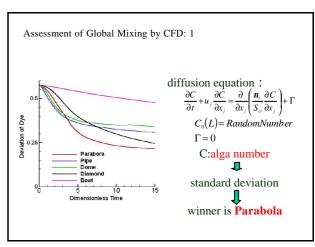


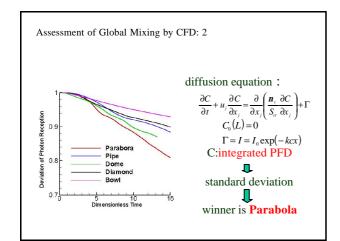


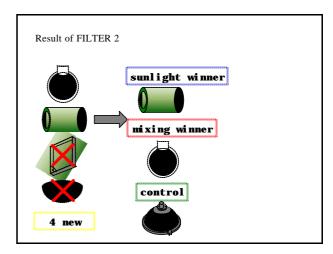


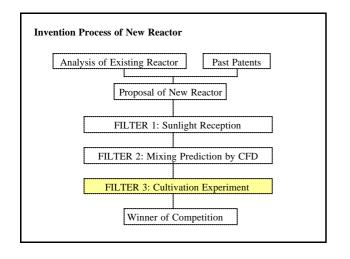


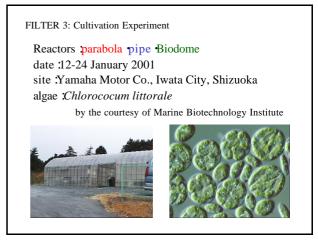


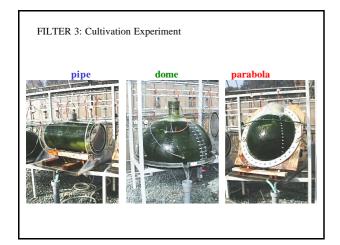


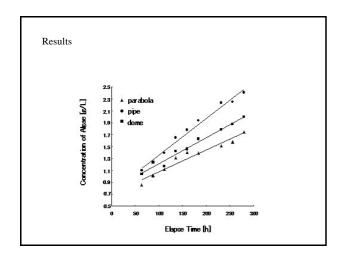




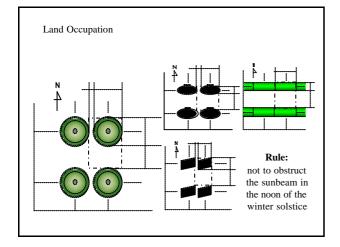


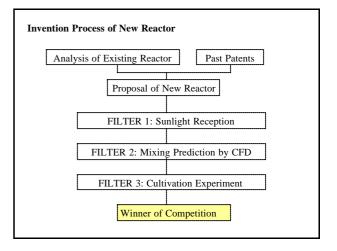


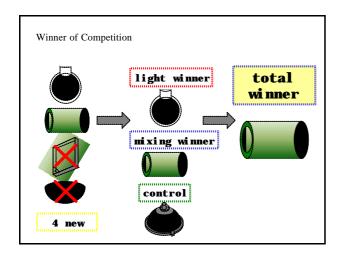




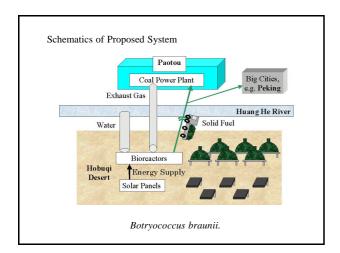
Dimensions and Conditions

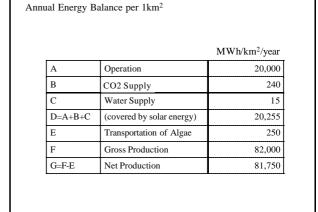

	capacity	occupation	air flow rate	temperature	щ
	(L)	(m ²)	(L/min)	(deg)	pН
parabola	70	2.21	31		
pipe	70	0.90	31	25	7.0-8.0
Biodome	130	2.74	60		

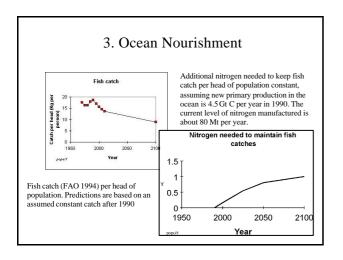

- · MC Culture Medium: artificial seawater
- Initial Alga Concentration :1 .0g/L
- · Align Direction: South (Axis: west-east)

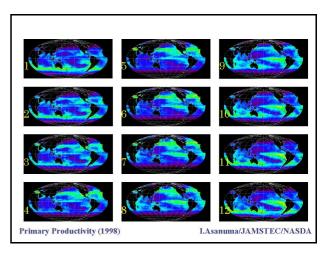


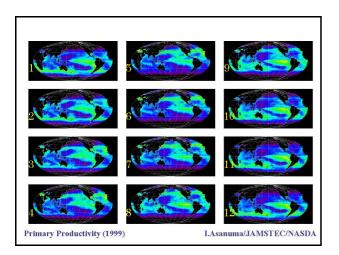
Assessment of Efficiency

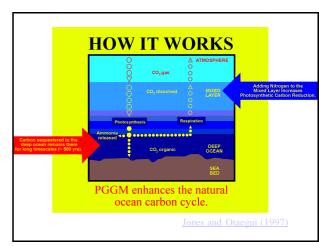

	growth rate	growth rate	growth rate
	per apparatus	per volume	per land area
	(g/day)	(g/L/day)	(g/m²/day)
parabola	6.05	0.086	2.73
pipe	10.25	0.146	11.39
Biodome	12.38	0.095	4.52

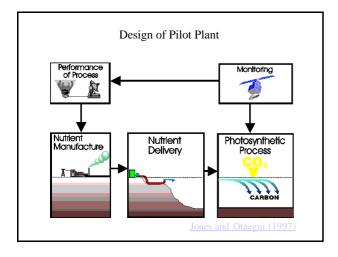







Annual CO2 Fixation per 1km2 Η **Energy Production** 19,800 in Electricity (MWh/km²/year) CO₂ Emission 14.7 per Unit Electricity Chinese Coal (tCO2/MWh) Power Plant J=HI CO₂ Fixation per Unit Area 291,000 (tCO₂/km²/year)

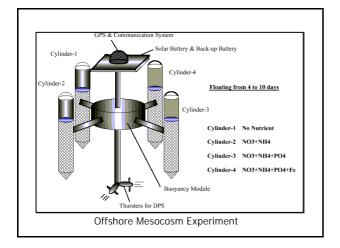

	τ	JS\$mill/km ² /year
K	Initial Cost (US\$mill)	556.9
L	Annual Balance (US\$mill)	-12.0
M=K/20-L	Annual Balance with Redemption (US\$mill)	39.8
N=M/J	CO ₂ Fixation Cost (US\$/tCO ₂)	137
•		50000JPY/tC

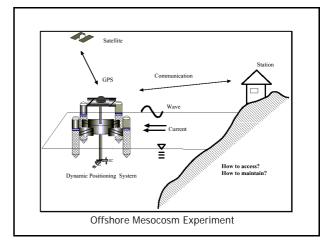

Cost of CO₂ Fixation

Research Project "Ocean Nourishment in Asia"

Objectives

- 1. To Measure Carbon Flux Sinking to Deep Ocean and to Calculate Efficiency
- 2. To Estimate Benefits in Fish Catch via Food Web
- 3. To Assess Impacts to Ocean Ecosystem


Research Team


Ocean Biologists

Ocean Chemists

Ocean Physicians

Ocean Engineers

Capacity and Cost

• Amount of CO2 sequestration per Ammonia 1ton

- Redfield Ratio: 20t

 $-\,$ CO2 emission by operation : -2 t

- Deep-Sea Sequestration Efficiency 70%: 12.6t

• Cost: \$19/tC (2200JPY/tC)

• Capacity: 5MtC/yr by 5 Pilot Plants