HOW DO YOU DO?

obal Environmental Policy 2004

Makoto Akai

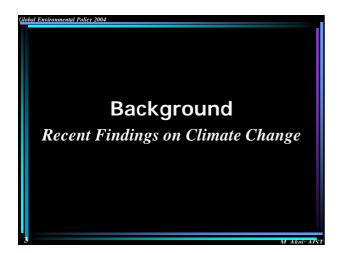
National Institute of Advanced Industrial Science and Technology (AIST)

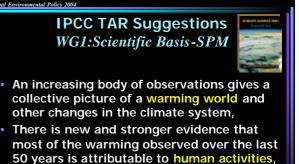
Background: Nuclear Engineering
Research Area:

Two Phase Flow Dynamics; MHD; etc.
Technology Assessment
Energy Modeling; Life Cycle Assessment; Externality
Public Communication

Other Activities:

R&D Projects under METI
International Collaboration
IEA: Technology Assessment; Hydrogen Agreement; GHG Prog.
IPCC
CSLF


obal Environmental Policy 2004

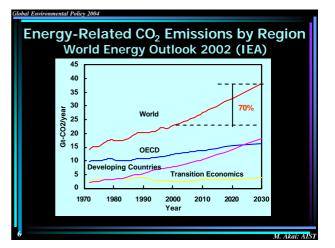

Global Environmental Policy Lecture Plan

- May 11: Overview
 - International aspects
 - Background
 - The Road to Kyoto and Beyond
 - Recent topics
- May 18: Energy and Environmental Policies

– Japan, US, etc.

 May 25: Challenge towards Deep GHG Reduction

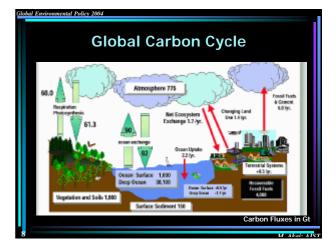
• Human influences will continue to change atmospheric composition throughout the 21st century.

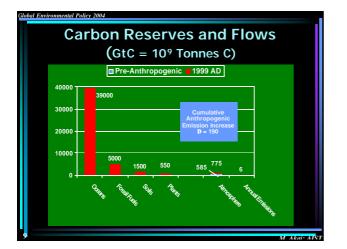

M Akai: ATS

IPCC TAR Recommendations WG3:Mitigation-SPM

M Akai AIS

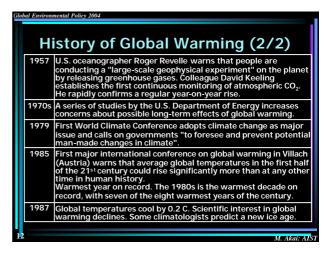
- Earlier actions, including a portfolio of emissions mitigation, technology development and reduction of scientific uncertainty, increase flexibility in moving towards stabilization of atmospheric concentrations of greenhouse gases,
- Rapid near-term action would decrease environmental and human risks associated with rapid climatic changes.


lobal Environmental Policy 2004


Findings - World Energy Outlook 2002

- Fossil fuels will continue to dominate the world's energy mix over the next decades.
 - Hence, even under the international climate policies, emissions of GHGs from the energy sector are expected to continue growing, reaching 38 billion tones-CO₂ by 2030.
- Emissions will shift from the industrialized countries to the developing world.
- The developing countries' share of global emissions will jump from 34% now to 47% in 2030, while the OECD's share will drop from 55% to 43%.

MA


M. Akai: AIST

lo	obal Environmental Policy 2004							
	History of Global Warming (1/2)							
	1827	French mathematician Jean-Baptiste Fourier suggests the existence of an atmospheric mechanism keeping the Earth warmer than it would otherwise be. He likens it to a greenhouse.						
	1863	Irish scientist John Tyndall publishes a paper describing how atmospheric water vapor could contribute to this mechanism.						
	1890s	Swedish scientist Svante Arrhenius and American P.C. Chamberlain independently investigate the potential problems that could be caused by carbon dioxide (CO ₂) building up in the atmosphere. They both suggest that burning fossil fuels could lead to global warming, but neither suspect the process might already have started.						
	1890s - 1940	Average surface air temperatures increase by about 0.25 C. Some scientists see the American Dust Bowl (a devastating, persistent drought in the 1930s) as a sign of the greenhouse effect at work.						
	1940 - 1970	Global temperatures cool by 0.2 C. Scientific interest in global warming declines. Some climatologists predict a new ice age.						

Environmental I
1988
1990
1992
1995
1996
1997

obal Environmental Policy 2004

1 Environmental Policy 2004

1988 - Year of Breaking Out

- Dr. Hansen testified before the U.S. Senate
 99 percent sure ... the greenhouse effect has been detected and it is changing our climate now.
- World Conference on the Changing Atmosphere: Implications for Global Security (Toronto) called for 20 % cuts in global CO₂ emissions by the year 2005
- WMO and UNEP established the Intergovernmental Panel on Climate Change (IPCC).

M Akai: AIS

M Akai AIS

Global I	Environmental 1	Policy 2004	1
		Road to Kyoto	
	1988	•Heat wave in U.S. granary •Testimony by Dr. Hansen •Toronto Conference •Establishment of IPCC	
	1990	•IPCC First Assessment Report	
	1992	•Earth Summit IP UNFCCC	
	1995	•COP-1 (Berlin) Þ Berlin Mandate •IPCC Second Assessment Report	
	1996	•COP-2 (Geneva)	
	1997	•COP-3 (Kyoto) Þ Kyoto Protocol	
15		M Akm- AIST	r

Earth Summit

UN Conf. on Environment and Development

- The centerpiece was the ratification of the UNFCCC and was signed by 154 nations.
- UNFCCC does not contain binding targets for GHG emission reductions, but recognizes the importance of reducing GHG emissions in order to prevent "dangerous interference" with the climate system.

lobal Environmental Policy 2004	Global En
UNFCCC	
 Sets an initial target for industrialized countries to reduce their GHG emission to 1990 levels by the year 2000. 	
 Demanded each industrialized nation 	
to submit national communication on GHG emission inventory, and to	
provide financial and technical	
assistance to developing countries for	
the reporting. Came into force on 21 March 1994. 	
	r 18

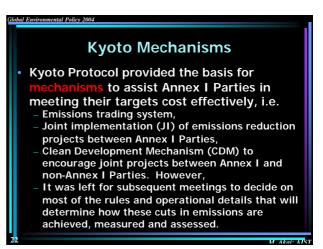
COP-1

Conference of the Parties on its First Session

Berlin Mandate

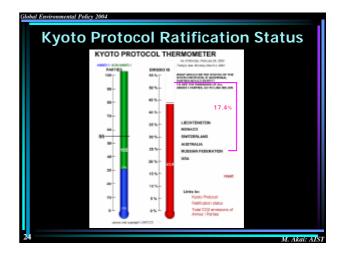
obal Environmental Policy 2004

- To initiate a process to enable Governments to take appropriate action for the period beyond 2000, including a strengthening of developed country commitments.
- The work should be completed as early as possible so that the results can be adopted at COP-3 in 1997.
- Developing countries are explicitly exempted from these new commitments.


M Akai · AIST

M Akai AIS

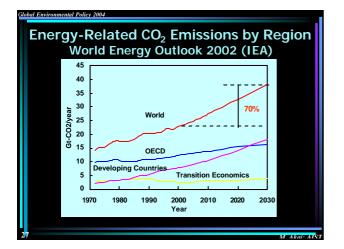
M Akai AIS


Road to Kyoto 1988 •Heat wave in U.S. granary •Testimony by Dr. Hansen •Toronto Conference •Establishment of IPCC 1990 •IPCC First Assessment Report 1992 •Earth Summit **Þ** UNFCCC 1995 •COP-1 (Berlin) **Þ** Berlin Mandate •IPCC Second Assessment Report 1996 1997 •COP-3 (Kyoto) **Þ** Kyoto Protocol

Kyoto Protocol to the UNFCCC 38 developed countries agreed to reduce their emissions of six GHGs by a total of 5.2% between 2008 and 2012 from 1990 levels $- CO_2, CH_4, N_2O, HFCS, PFCS, SF_6$ Party quantified emission limitation or reduction commitment include (% reduction): Austria (8); Canada (6); Japan (6); Romania (8); Russian Federation (0); Switzerland (8); USA (7); UK (8);

Towards Effectuation of Kyoto Protocol

 In order for the Kyoto Protocol to enter into force, it must be ratified by 55 Parties to the UNFCCC, including Annex I Parties representing at least 55% of the total carbon dioxide emissions for 1990.

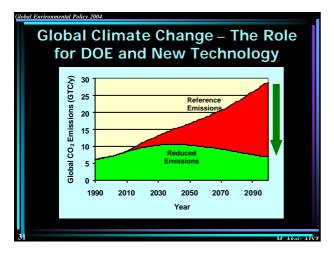

Continued Negotiations

- Carbon sink --- What is Kyoto Forest?
 Land Use, Land Use Change and Forestry (LULUCF)
- Rules and operational details of Kyoto Mechanisms
- Involvement of and assistance to developing countries
- Compliance, etc.

obal Environmental Policy 2004

IPCC Special Report on LULUCF - SPM -

- 1. Introduction
- 2. Global Carbon Cycle Overview
- 3. Issues Associated with Definitions 3.1. Forests, Afforestation, Reforestation, and Deforestation 3.2. Additional Activities
- 4. Carbon Accounting
- 5. Methods for Measuring and Monitoring
- 6. Estimates of Average Annual Carbon Stock
- Changes /Accounted for ARD Activities and Some Additional Activities 6.1. Afforestation, Reforestation, and Deforestation 6.2. Additional Activities
- 7. Project-Based Activities



President's Key Policy Addresses: June 11, 2001 Committed U.S. to Work Within UN Framework Directed U.S.G. to Develop Flexible, Science-Based Response Supported UNFCCC to Stabilize GHG Concentrations Established National Climate Change Technology Initiative Established Climate Change Research Initiative February 14, 2002 Reaffirmed Long-Term UNFCCC Central Goal Established U.S Goal to Reduce GHG Intensity by 18% by

- Established U.S Goal to Reduce GHG Intensity by 18% by 2012
- Encouraged Business Challenges and Voluntary Reporting Directed Improvements to the EPACT Emissions Registry
- Directed Improvements to the E

ental Policy 2004

- Supported Transferable Credits
- Valued GHG Avoidances by Supporting Financial Incentives

Technology Pathways #1: Closing the Loop on Carbon - Introduction of Carbon Sequestration and Hydrogen Technologies Augment the Standard Suite of Energy Technologies #2: Renewables and Nuclear Succeed - Major Technological Advances in Renewable and Hydrogen Technologies are Coupled with a New Generation of Nuclear Reactors #3: Beyond the Standard Suite - Dramatic Breakthroughs in "New and Advanced Technologies – e.g., Fusion, Bio-X" – Create a Fundamentally Changed Energy System

bal Environmental Policy 2

Carbon Sequestration Leadership Forum

- CSLF is an international climate change initiative that is focused on development of improved cost-effective technologies for the separation and capture of CO₂
- The purpose is to make these technologies broadly available internationally; and to identify and address wider issues relating to carbon capture and storage.
- This could include promoting the appropriate technical, political, and regulatory environments for the development of such technology.

M Ak

abal Environmental Policy 2004

CSLF Collaborative Projects Review by Technical Group

- Information exchange and networking,
- Planning and road-mapping,
- Facilitation of collaboration,
- Research and development,
- Demonstrations,

obal Environmental Policy 2004

- Public perception and outreach,
- Economic and market studies,
- Institutional, regulatory, and legal constraints and issues,
- Support to policy formulation, or
- Other issues as authorized by the Policy Group.

FutureGen-Goals (1/2)

A Sequestration and Hydrogen Research Initiative

- Design, construct, and operate a nominal 275MW (net equivalent output) prototype plant that produces electricity and H_2 with near-zero emissions. The size of the plant is driven by the need for producing commercially-relevant data, including the requirement for producing one million metric tons per year of CO₂ to adequately validate the integrated operation of the gasification plant and the receiving geologic formation.
- Sequester at least 90 % of CO₂ emissions from the plant with the future potential to capture and sequester nearly 100 %.

FutureGen-Goals (2/2)

ental Policy 2004

A Sequestration and Hydrogen Research Initiative

- Prove the effectiveness, safety, and permanence of CO₂ sequestration.
- Establish standardized technologies and protocols for CO₂ measuring, monitoring, and verification.
- Validate the engineering, economic, and environmental viability of advanced coal-based, near-zero emission technologies that by 2020 will: (1) produce electricity with less than a 10% increase in cost compared to nonsequestered systems; (2) produce hydrogen at \$4.00 per million Btus (wholesale), equivalent to \$0.48/gallon of gasoline, or \$0.22/gallon less than today's wholesale price of gasoline.

M Akai AIS

M Ako

International Partnership for the Hydrogen Economy (IPHE)

Purposes:

lobal Environmental Policy 2004

- To serve as a mechanism to organize and implement effective, efficient, and focused international research, development, demonstration and commercial utilization activities related to hydrogen and fuel cell technologies.
- To provide a forum for advancing policies, and common codes and standards that can accelerate the cost -effective transition to a global hydrogen economy to enhance energy security and environmental protection.

M Akai · AIST

