1 July 2003

Biomass, Ocean Nourishment, Photobioreactor

Toru Sato

Technology for Reduction of CO2

Energy Saving Energy Conversion Sequestration/Recycle of CO2

Technology for Reduction of CO2

Energy Saving Energy Conversion Sequestration/Recycle of CO2

> Geological Sequestration Ocean Sequestration Biological Sequestration

Technology for Reduction of CO2

Energy Saving Energy Conversion Sequestration/Recycle of CO2

> Geological Sequestration Ocean Sequestration Biological Sequestration

> > Afforestation Microalgae Ocean Nourishment

Capacity and Problems (Japan)

Total Forestry Area : 25Mha (10Mha in Artificial, 2nd in World) Annual Timber Increase : $69 \times 10^7 \text{m}^3$ (59 × 10^7m^3 in Artificial) equivalent to 8% reduction of domestic CO2 emission Therefore, 8.6× $10^7 \text{m}^3 / 1\%$ reduction or 2.2Mha / 1% reduction (cutting efficiency 70%)

However, most of them are burned at their last stage!!! Electricity from Woody (xylem) Wastes

if Flat Fallow Area : 1Mha / 1% reduction (Growth rate 9m³/ha/yr EU standard)

But impossible!

Wide Area Abroad via CDM

Economy of Biomass Power Plant 燃料価格(円) 製材工場 るの 質廃棄物 エネルギー供給量(kWh) 図 (5) 木質バイオマスの価格とエネルギー 絵景の間の Chip Price: 1000-6000JPY/t (ave. 2500JPY/t) 1000JPY/t = 2.1JPY/kWh (Price to Grid is 2-3JPY/kWh) However, no one wants to sell the same timbers to Obtain 10% Benefit, Price to Grid : 12JPY/kWh (Wind Mill, TEPCO) 2000JPY/t 20JPY/kWh (more Government Support) 6000JPY/t

Organization	Site	Biomass	Investment (JPY)	Area (ha)	Carbon Fixation	Cost (JPY/tC
Tokyo Electric Power	Australia, Tasmania	eucalyp- tus	1800mil. (total)	10000 /10yrs	3tC/ha	60000
Tohoku Electric Power	Australia, APFL Ltd.	eucaly - ptus	8000mil. (total)	26000 /10yrs	5tC/ha	61500
Kansai Electric power	Australia, Perth	eucaly - ptus	400mil. (total)	1000/ 20yrs	235KtC (total)	1700
Mitsubishi Paper Mills	Australia, Tasmania	eucaly - ptus	6300mil. (total)	25500 /15yrs	130KtC/ y r	3200
Japan Int. Forestry Center	Indonesia, LombokIsl.	neem	-	3000/ 10yrs	4.5tC/ha	4000
Idemitsu Kosan	Australia, Ebenezer	eucaly - ptus	25mil. (total)	135/ 5yrs	6820tC (total)	3700

2. Micros	algae
photosynthesis - valuable products -	CO2 fixation business chance
Microalgae	usage
Chlorella Sp.	healthy food
Nanno chloropsis	feed staff (DHA)
Botryococcus braunii	hydrocarbon
Hematococcus	Astaxithantin
Chlorococcum litorale	low pH

FILTER 3: Cultivation Experiment

Reactors parabola pipe Biodome date :12-24 January 2001 site :Yamaha Motor Co., Iwata City, Shizuoka algae :*Chlorococum littorale* by the courtesy of Marine Biotechnology Institute

Dimensions and Conditions

	capacity	occupation	air flow rate	temperature	
	(L)	(m ²)	(L/min)	(deg)	рн
parabola	70	2.21	31		
pipe	70	0.90	31	25	7.0-8.0
Biodome	130	2.74	60		

• MC Culture Medium: artificial seawater

Initial Alga Concentration :1 .0g/L

Align Direction: South (Axis: west-east)

ssessment o	f Efficiency		
	growth rate	growth rate	growth rate
	per apparatus	per volume	per land area
	(g/day)	(g/L/day)	(g/m²/day)
parabola	6.05	0.086	2.73
pipe	10.25	0.146	11.39
Biodome	12.38	0.095	4.52

		MWh/km ² /year
A	Operation	20,000
В	CO2 Supply	240
С	Water Supply	15
D=A+B+C	(covered by solar energy)	20,255
Е	Transportation of Algae	250
F	Gross Production	82,000
G=F-E	Net Production	81,750

ual CO ₂ Fixat	tion per 1km ²	
Н	Energy Production in Electricity	19,800
T	(MWh/km ² /year)	14.7
1	per Unit Electricity	Chinese Coal
	(tCO ₂ /MWh)	Power Plant
J=HI	CO ₂ Fixation	
	per Unit Area	291,000
	(tCO ₂ /km ² /year)	

of CO ₂ Fixatio	n	
	τ	US\$mill/km²/yea
K	Initial Cost (US\$mill)	556.9
L	Annual Balance	-12.0
	(US\$mill)	
M=K/20-L	Annual Balance with	39.8
	Redemption (US\$mill)	
N=M/J	CO ₂ Fixation Cost	137
	(US\$/tCO ₂)	

50000JPY/tC(afforestation 400-60000JPY/tC)

Research Project " Ocean Nourishment in Asia "

Objectives

- 1. To Measure Carbon Flux Sinking to Deep Ocean and to Calculate Efficiency
- 2. To Estimate Benefits in Fish Catch via Food Web
- 3. To Assess Impacts to Ocean Ecosystem

Research Team

Ocean Biologists Ocean Chemists Ocean Physicians Ocean Engineers

