Global Environmental Policy

Polar Environment and Global Warming (changed) International Research Project, INSROP INSROP GIS Experimental Voyage

> May 27, 2003 Hajime Yamaguchi

INSROP

1st Phase: 3 years, 1993-1995

Evaluation Phase: 1 year, 1996

2nd Phase: 2 years, 1997-1998

Final Presentation: 1999

Budget: 2-3,000,000 US\$ / year

4

6

INSROP

4 Sub-Programmes

- 1. Natural Conditions and Ice Navigation
- 2. Environmental Factors
- 3. Trade and Commercial Shipping Aspects
- 4. Political, Legal and Strategic Factors

Each sub-programmes manages 10-20 projects every year.

5

INSROP Outputs

- 166 research project reports
- 3 books (2 English, 1 Japanese)
- 3 international conferences
- INSROP GIS

Major Roles

Russia: . CNIIMF, Icebreaker and navigation data AARI, Ice conditions and other environmental data

- Norway: GIS Environmental impact assessment Political and Economical demands Japan:
 - Extensive tank tests for optimal ship design Experimental voyage Navigation simulation and economic assessment Inputs from Canada and Finland

Many Negotiations

- · Complicated structure of Russian Society > CNIIMF as agency SOF members = office workers and not many Volunteer works of researchers
- Tell clearly what we need, and what we want to and can do with it.
- Find characters to whom we are asking something.
- Realize team working ASAP.
- Internet communication as well as normal communications.

Oil Spill Simulation

- Wind and current data in the INSROP GIS.
- 3,500 ton spilled oil to be assumed.
- Probability of oil presence due to statistical variation of wind and current.

Navigation Route Analysis

- Sea depth data points
- Display of sea depth distribution
- Overlay of ice thickness
- Assumption of new route
- Ice thickness distribution in the narrow strip along the new route

201	10000 1.						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		_			
	易風			1	<u>88</u> <		Σ	$\mathbb{E}[Z]$	N ?			
123 of 10942 pelected k 10 0												
· butter	of Milli	anar ing s	statistics - N	nuember -	Field Ine	thickness mea	n					
Enit	<i>d 11</i>	Chat mi	Ont man /	That meeting	Ort me	FIDH > 1/121	PICht > 4/12	FION > 7121	los thickness mi	los thickness men	los thiskness medie	low thickness mes PI The
554	2 .	100	100	100	100	100	100	100	10	105	100	400
554	2 0	100	100	100	100	100	100	100	10	165	160	420
568	1 5	100	100	100	100	100	100	100	10	180	234	420
568	2 5	100	100	100	100	100	100	100	10	189	234	420
568	3 6	100	100	100	100	100	100	100	10	165	190	420
582	4 5	100	100	100	100	100	100	100	10	143	49	420
582	5 5	100	100	100	100	100	100	100	10	180	234	420
582	6 4	100	100	100	100	100	100	100	10	164	160	420
597	2 5	100	100	100	100	100	100	100	10	143	49	420
597	3 5	100	100	100	100	100	100	100	10	143	49	420
597	4 4	100	100	100	100	100	100	100	10	107	48	420
612	6 5	100	100	100	100	100	100	100	10	128	49	420
612	7 5	100	100	100	100	100	100	100	10	143	49	420
612	8 4	100	100	100	100	100	100	100	10	107	48	420
628	4 5	100	100	100	100	100	100	100	10	143	49	420
628	5 4	100	100	100	100	100	100	100	10	107	48	420
628	6 4	100	100	100	100	100	100	100	10	107	48	420
644	5 5	100	100	100	100	100	100	100	10	143	49	420
644	6 4	100	100	100	100	100	100	100	10	107	48	420
644	7 3	100	100	100	100	100	100	100	10	127	49	420
661	1 4	100	100	100	100	100	100	100	10	136	105	420
661	2 2	100	100	100	100	100	100	100	10	105	105	420
661	3 2	100	100	100	100	100	100	100	10	105	105	420
677	9 3	100	100	100	100	100	100	100	10	94	20	420
678	0 2	100	100	100	100	100	100	100	10	105	105	420
678	1 2	100	100	100	100	100	100	100	10	105	105	420
694	a 2	100	100	100	100	100	100	100	10	145	145	420
	2 2	100	100	100	100	100	100	100	15	23	23	30
+	2 3	100	100	100	100	100	100	100		20	10	/0
	J 5	0	10	00	100	20	20	00		10	5	30
	5 5	0	14	0	20	20	20	20		5	5	9
	C 6	- 0	20	0	100	20	20	20		10	10	20
	7 5	0	36	0	100	40	40	40		10	12	30
	8 5	0	36	0	100	40	40	40		13	12	30
	9 5	0	20	0	100	20	20	20		5	5	
1	0 5	1 0	20	0	100	20	20	20		5	5	9
1	1 1	80	80	80	80	100	100	100	1	5	5	9

EIA Environmental Impact Assessment (Effects on Biological System)

Effects of increased NSR navigation on Ivory Gulls in Kara Sea (quantification of simplified equation)

EIA for Normal NSR Operation

1st step: display the spatial distribution of Ivory Gull colonies

43

EIA

 3^{rd} step: spatial range of a given impact factor represented by an influence zone along the sailing segments

EIA

4th step: potential conflict area given as overlap between the Ivory colony distribution and the influence zone for the impact factor

EIA

5th step: identification of sensitive/high risk areas

Why GIS for EIA?

- EIA can be done without GIS.
- But GIS speed-ups the EIA process, possibly realizing the PDCA (Plan-Do-Check Action) environment management system.

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text>

Experimental Voyage through the Northern Sea Route: August, 1995

7 Tasks

- Monitoring the test voyage Ice conditions along the route Ship's progress Evaluation of the transit voyage
- Evaluation of satellite ice information Verification of satellite ice image by field data Effectiveness of satellite ice image for navigation
- Performance measurement of SA-15 cargo ship Daily logging of the voyage Ship performance measurement

Experimental Voyage through the Northern Sea Route: August, 1995

7 Tasks

- Technical issues of SA-15 cargo ships
- Operational problems of the NSR and future prospect
- Observation of natural environment
- Video documentation of the voyage

55

People on board

- 32 Crew All Russian, A few persons can speak English.
- 18 Members of Scientific Team including 2 professional video crew, 1 director and 1 cameraman.

18 Japanese, 2 Russian and 1 Canadian.

Experimental Voyage through the Northern Sea Route: August, 1995

Projection of 35 min. video which recorded the onboard activities of the mission team consisting of 18 members from Japan, Russia and Canada.

58

56

Homework

Select 1 from the following 2 tasks:

- Investigate and discuss the feasibilities of the development of Russian polar regions including Okhotsk area from technological, economical, social and environmental aspects.
- 2. Survey the use of GIS for environmental issues and discuss the future prospect.